3,568 research outputs found

    Body composition, IGF1 status, and physical functionality in nonagenarians: implications for osteosarcopenia

    Get PDF
    OBJECTIVES: Body composition alterations occur during aging. The purpose of the present analysis was to explore the functional consequences of the overlap of sarcopenia and osteoporosis, and the potential role of insulin-like growth factor 1 (IGF1) in their development in the oldest old. SETTING AND PARTICIPANTS: Eighty-seven nonagenarians from the Louisiana Healthy Aging Study were included. MEASURES: The definition of sarcopenia was based on appendicular lean mass (ALM). Osteoporosis was diagnosed based on bone mineral density (BMD) T score. Four phenotypes were compared: (1) healthy body composition, that is, nonosteoporotic nonsarcopenic (CO, control group), (2) osteoporotic (O, low BMD T score), (3) sarcopenic (S, low ALM), and (4) osteosarcopenic (OS, low BMD T score and low ALM). Sex- and age-specific IGF1-Standard Deviation Scores (SDS) were calculated. The Continuous Scale-Physical Functional Performance (CS-PFP) test was performed. RESULTS: In OS men, IGF1-SDS values (-0.61 ±0.37 vs -0.04 ± 0.52, P = .02) were lower than those in CO males (control group), whereas IGF1-SDS were similar in the 4 body composition phenotypes in women. In men only, ALM was positively associated with IGF1-SDS values (P = .01) independent of age and C-reactive protein concentration. Regarding bone health, we found no association between IGF1-SDS values and BMD. IGF1-SDS was not associated with functional performance (CS-PFP) in men and women. CONCLUSIONS/IMPLICATIONS: IGF1 sensitivity in skeletal muscle and bone may differ by sex in the oldest old. IGF1 status did not appear to affect physical functionality. Determinants and clinical and functional characteristics of osteosarcopenia need to be further investigated in order to define conclusive diagnostic criteria

    Vascular Occlusion Affects Gait Variability Patterns of Healthy Younger and Older Individuals

    Get PDF
    Insufficient blood flow is one possible mechanism contributing to altered gait patterns in lower extremity peripheral arterial disease (PAD). Previously, our laboratory found that induced occlusion alters gait variability patterns in healthy young individuals. However the effect of age was not explored. The purpose of this study was to account for age by investigating gait variability following induced vascular occlusion in healthy older individuals and to identify amount of change from baseline to post vascular occlusion between younger and older individuals. Thirty healthy younger individuals and 30 healthy older individuals walked on a treadmill during baseline and post vascular occlusion conditions while lower extremity joint kinematics were captured. Vascular occlusion was induced by thigh cuffs inflated bilaterally on the upper thighs. Amount and temporal structure of gait variability was assessed. Older individuals exhibited significantly increased values of temporal structure of variability post vascular occlusion. Post vascular occlusion values were similar between younger and older individuals after adjusting for baseline measurements. Results show blood flow contributes to altered gait variability. However alterations were less severe than previously documented in symptomatic PAD patients, suggesting that neuromuscular problems in the lower extremities of PAD patients also contribute to gait alterations in these patients

    Specifications of standards in systems and synthetic biology: status and developments in 2021

    Get PDF
    This special issue of the Journal of Integrative Bioinformatics contains updated specifications of COMBINE standards in systems and synthetic biology. The 2021 special issue presents four updates of standards: Synthetic Biology Open Language Visual Version 2.3, Synthetic Biology Open Language Visual Version 3.0, Simulation Experiment Description Markup Language Level 1 Version 4, and OMEX Metadata specification Version 1.2. This document can also be consulted to identify the latest specifications of all COMBINE standards

    Specifications of standards in systems and synthetic biology: status and developments in 2022 and the COMBINE meeting 2022

    Get PDF
    This special issue of the Journal of Integrative Bioinformatics contains updated specifications of COMBINE standards in systems and synthetic biology. The 2022 special issue presents three updates to the standards: CellML 2.0.1, SBML Level 3 Package: Spatial Processes, Version 1, Release 1, and Synthetic Biology Open Language (SBOL) Version 3.1.0. This document can also be used to identify the latest specifications for all COMBINE standards. In addition, this editorial provides a brief overview of the COMBINE 2022 meeting in Berlin

    Logarithmic correction to BH entropy as Noether charge

    Get PDF
    We consider the role of the type-A trace anomaly in static black hole solutions to semiclassical Einstein equation in four dimensions. Via Wald's Noether charge formalism, we compute the contribution to the entropy coming from the anomaly induced effective action and unveil a logarithmic correction to the Bekenstein-Hawking area law. The corrected entropy is given by a seemingly universal formula involving the coefficient of the type-A trace anomaly, the Euler characteristic of the horizon and the value at the horizon of the solution to the uniformization problem for Q-curvature. Two instances are examined in detail: Schwarzschild and a four-dimensional massless topological black hole. We also find agreement with the logarithmic correction due to one-loop contribution of conformal fields in the Schwarzschild background.Comment: 14 pages, JHEP styl

    Variability in Tuberculosis Granuloma T Cell Responses Exists, but a Balance of Pro- and Anti-inflammatory Cytokines Is Associated with Sterilization

    Get PDF
    Lung granulomas are the pathologic hallmark of tuberculosis (TB). T cells are a major cellular component of TB lung granulomas and are known to play an important role in containment of Mycobacterium tuberculosis (Mtb) infection. We used cynomolgus macaques, a non-human primate model that recapitulates human TB with clinically active disease, latent infection or early infection, to understand functional characteristics and dynamics of T cells in individual granulomas. We sought to correlate T cell cytokine response and bacterial burden of each granuloma, as well as granuloma and systemic responses in individual animals. Our results support that each granuloma within an individual host is independent with respect to total cell numbers, proportion of T cells, pattern of cytokine response, and bacterial burden. The spectrum of these components overlaps greatly amongst animals with different clinical status, indicating that a diversity of granulomas exists within an individual host. On average only about 8% of T cells from granulomas respond with cytokine production after stimulation with Mtb specific antigens, and few “multi-functional” T cells were observed. However, granulomas were found to be “multi-functional” with respect to the combinations of functional T cells that were identified among lesions from individual animals. Although the responses generally overlapped, sterile granulomas had modestly higher frequencies of T cells making IL-17, TNF and any of T-1 (IFN-γ, IL-2, or TNF) and/or T-17 (IL-17) cytokines than non-sterile granulomas. An inverse correlation was observed between bacterial burden with TNF and T-1/T-17 responses in individual granulomas, and a combinatorial analysis of pair-wise cytokine responses indicated that granulomas with T cells producing both pro- and anti-inflammatory cytokines (e.g. IL-10 and IL-17) were associated with clearance of Mtb. Preliminary evaluation suggests that systemic responses in the blood do not accurately reflect local T cell responses within granulomas

    A rare case of pigmented villonodular synovitis after unicompartmental knee replacement: a case report

    Get PDF
    Pigmented villonodular synovitis is a benign proliferative disease involving the synovium. Pigmented villonodular synovitis is rare after replacement arthroplasty and has not been recognised and reported as a cause of failure of unicompartmental knee replacement in the literature

    Design and Culture in the Making of Happiness

    Get PDF
    Design responds to the needs of individuals, being happiness and wellbeing the subject of an increasing number of studies, which gave rise to a new discipline, Positive Psychology. From these new approaches and concerns related to subjective well-being comes Positive Design, whose objective is to promote the well-being of individuals and communities in connection with a culture of innovation. The cultural routes made accessible through wayfinding systems, make it possible to put Heritage in dialogue, emphasize the culture, memory and history of communities, providing citizens with meaningful experiences that will have an impact both in the short and long run, thus becoming agents for the happiness of individuals. This article discusses the concept of Positive Design based on Positive Psychology, analyzes the evolution and importance of Heritage in the Culture of peoples and communities, questioning how the Wayfinding Systems developed for cultural promotion can integrate the practice of Positive Design and how this contributes to the subjective well-being of individuals

    Towards Electrosynthesis in Shewanella: Energetics of Reversing the Mtr Pathway for Reductive Metabolism

    Get PDF
    Bioelectrochemical systems rely on microorganisms to link complex oxidation/reduction reactions to electrodes. For example, in Shewanella oneidensis strain MR-1, an electron transfer conduit consisting of cytochromes and structural proteins, known as the Mtr respiratory pathway, catalyzes electron flow from cytoplasmic oxidative reactions to electrodes. Reversing this electron flow to drive microbial reductive metabolism offers a possible route for electrosynthesis of high value fuels and chemicals. We examined electron flow from electrodes into Shewanella to determine the feasibility of this process, the molecular components of reductive electron flow, and what driving forces were required. Addition of fumarate to a film of S. oneidensis adhering to a graphite electrode poised at −0.36 V versus standard hydrogen electrode (SHE) immediately led to electron uptake, while a mutant lacking the periplasmic fumarate reductase FccA was unable to utilize electrodes for fumarate reduction. Deletion of the gene encoding the outer membrane cytochrome-anchoring protein MtrB eliminated 88% of fumarate reduction. A mutant lacking the periplasmic cytochrome MtrA demonstrated more severe defects. Surprisingly, disruption of menC, which prevents menaquinone biosynthesis, eliminated 85% of electron flux. Deletion of the gene encoding the quinone-linked cytochrome CymA had a similar negative effect, which showed that electrons primarily flowed from outer membrane cytochromes into the quinone pool, and back to periplasmic FccA. Soluble redox mediators only partially restored electron transfer in mutants, suggesting that soluble shuttles could not replace periplasmic protein-protein interactions. This work demonstrates that the Mtr pathway can power reductive reactions, shows this conduit is functionally reversible, and provides new evidence for distinct CymA:MtrA and CymA:FccA respiratory units
    corecore